A	May Practice Test - Calculator	
1	£40 000 is invested in a long-term savings account for 3 years. The savings account pays interest at a rate of 5% per year. Calculate the total in the savings account after 3 years.	3
2	Expand and simplify $(4 x-5)\left(x^{2}-3 x+11\right)$	3
3	A sector of a circle has a centre angle of 55° and a radius of 8 centimetres. Calculate the length of the arc for this sector.	3
4	A sample of seawater contains 1.35×10^{-6} grams of pollutant in each millilitre if water. How much pollutant would be in 8 litres of seawater. Give your answer in scientific notation.	3
5	Write $x^{2}+12 x+34$ in completed square form $(x+a)^{2}+b$	2
6	This shape shown above a hemisphere placed on top of a cylinder. The cylinder and hemisphere both have a radius of 7 centimetres. The whole shape has a height of 17 centimetres. Calculate the volume of this shape. Give your answer correctly rounded to $\mathbf{2}$ significant figures.	5
7	Solve the inequation $5>3-2(x+5)$	3
8	Daily temperatures were taken for a week in the month of April in Aberdeen. The temperatures (in ${ }^{\circ} \mathrm{C}$) were: $11,9,14,12,7,8,16$, (a) Find the mean and standard deviation for these temperatures. (b) During the month of July temperatures were also recorded for one week. The average temperature was $18^{\circ} \mathrm{C}$ and the standard deviation was 4.2. Write two statements comparing the temperatures in April and July.	4 2

9	(a) Factorise $x^{2}-16$ (b) Factorise $x^{2}-3 x-4$ (c) Hence simplify $\frac{x^{2}-4}{x^{2}-3 x-4}$	1 1 2
10	A straight line has equation $y=6 x-5$. (a) State the gradient of the line. (b) State the coordinates of one point on the equation of the line.	1
11	Simplify $\quad\left(a^{5}\right)^{2} \times a^{4}$.	2
	35 marks	

Answers

1	$40000 \times\left(\frac{100+5}{100}\right)^{3}=£ 46305 \quad \text { or } 40000 \times 1.05^{3}=£ 46305$
2	$\begin{gathered} (4 x-5)\left(x^{2}-3 x+11\right)=4 x^{3}-12 x^{2}+44 x-5 x^{2}+15 x-55 \\ =\mathbf{4} \boldsymbol{x}^{3}-\mathbf{1 7} \boldsymbol{x}^{\mathbf{2}}+\mathbf{5 9} \boldsymbol{x}-\mathbf{5 5} \end{gathered}$
3	$\text { Arc Length }=\frac{55}{360} \times \pi \times 16=7.679 \ldots \text { Arc length is } 7.7 \mathrm{~cm}$
4	8 litres $=8,000 \mathrm{ml}, \quad\left(1.35 \times 10^{-6}\right) \times 8000=0.0108 \quad \mathbf{1 . 0 8} \times \mathbf{1 0}^{-2}$ grams
5	$x^{2}+12 x+34=(x+6)^{2}+34-6^{2}=(\boldsymbol{x}+\mathbf{6})^{2}-2$
6	$\begin{aligned} & \text { The volume of this solids is } V_{\text {cylinder }}+V_{\text {hemisphere }} \text { or } \pi \times r^{2} \times h+\frac{4}{3} \times \pi \times r^{3} \div 2 \\ & \text { For the cylinder the height is } 17 \text {-radius }=10 \mathrm{~cm}, \quad V_{\text {cylinder }}=\pi \times 7^{2} \times 10(1539.3804) \\ & \qquad V_{\text {hemisphere }}=\frac{4}{3} \times \pi \times 7^{3} \div 2(718.3775 \ldots) \\ & \text { Total volume is } 1539.3801+718.3775=2257.7579, \quad \mathbf{2 3 0 0} \mathbf{c m}^{3} \end{aligned}$
7	$\begin{gathered} 5>3-2(x+5), \quad 5>3-2 x-10, \quad 5>-7-2 x, \quad 12>-2 x, \\ \text { so }-12<2 x \text { or } 2 x>-12, \quad x>-6 \end{gathered}$
8	The mean is $11^{\circ} \mathrm{C}$. The totals for the tables are $\sum x=77, \quad \sum x^{2}=911$, or $\sum x=77, \quad \sum(x-\bar{x})^{2}=146$ The standard deviation is $\sqrt{\frac{911-\frac{77^{2}}{7}}{6}}=3.27^{\circ} \mathrm{C}$ or $\sqrt{\frac{64}{6}}=3.27^{\circ} \mathrm{C}$ On average temperatures were higher in July, but the temperatures were less consistent than in April.
9	(a) $x^{2}-16=(x+4)(x-4)$ (b) $x^{2}-3 x-4=(x-4)(x+1)$ (c) $\frac{x^{2}-16}{x^{2}-3 x-4}=\frac{(x+4)(x-4)}{(x-4)(x+1)}=\frac{x+4}{x+1}$
10	(a) The gradient of the line is 6 (b) Choose a value for x such as $x=2$ and substitute this into the equation to get the y-value. $y=6 \times 2-5, y=12-5=7$ the coordinate is $(2,7)$
11	$\left(a^{5}\right)^{2} \times a^{4}=a^{10} \times a^{4}=\boldsymbol{a}^{6}$

B	May Practice Test - Calculator	
1	A spherical balloon has a volume of approximately 14000 cubic centimetres. The balloon deflates evenly by 20\% per day. What is the expected volume of the balloon after 4 days. Give your answer rounded to the nearest thousand.	4
2	For the data set shown below find the median and the interquartile range (IQR) $\begin{array}{lllllllll} 22 & 25 & 28 & 29 & 30 & 35 & 36 & 38 & 38 \end{array}$	2
3	Find the equation of the straight line through the points $(0,-9)$ and $(3,0)$. Give your answer in the simplest form	3
4	(a) Factorise $x^{2}-9 y^{2}$ (b) Expand and simplify $\left(4 x^{2}+3\right)\left(x^{2}-1\right)$	2 3
5	A cylinder has a diameter of 24 centimetres and a height of 32 centimetres. Calculate the volume of this cylinder. Give your answer rounded to 3 significant figures.	3
6	Solve the inequation $5(4-x)>10$	2
7	Use the laws of indices to express $\frac{10 y}{c^{2}} \times \frac{c^{5}}{2 y^{3}}$ in the simplest form	3
8	A cyclist recorded her times in July for a 20-mile cycle. The times in minutes are $\begin{array}{llllll} 67 & 68 & 71 & 78 & 65 & 77 \end{array}$ Find the mean and standard deviation for these times.	4
9	Calculate the length of the space diagonal AB.	3

| 10 | A sector of has an area of $40 \mathrm{~cm}^{2}$ and a radius of 13
 centimetres. Calculate the size of the centre angle. | $\mathbf{3}$ |
| :--- | :--- | :--- | :--- |
| 11 | Add | $\frac{7}{x+5}-\frac{2}{x+1}, x \neq-5, x \neq-1$ |
| | 35 marks | $\mathbf{3}$ |

Answers

1	$14000 \times\left(\frac{100-20}{100}\right)^{4}=5734.40$ or $14000 \times 0.84=5734.40$ Answer is $\mathbf{6 , 0 0 0} \mathbf{~ c m}^{\mathbf{3}}$
2	Median is 30 . Lower quartile is 26.5 . Upper quartile is 37.1 IQR $=37-26.5=\mathbf{1 0 . 5}$
3	Gradient is $\frac{-9}{-3}=3 \quad y=m x+c \quad-9=3 \times 0+c, c=-9 \quad y=3 \boldsymbol{x}-\mathbf{9}$
4	(a) $x^{2}-9 y=(x+3 y)(x-3 y)$ (b) $\left(4 x^{2}+3\right)\left(x^{2}-1\right)=4 x^{4}-4 x^{2}+3 x^{2}-3=\mathbf{4} \boldsymbol{x}^{4}-\boldsymbol{x}^{\mathbf{2}}-\mathbf{3}$
5	radius is 12 cm , height is 32 cm $V=\pi \times 12^{2} \times 32=14476.45892$ Volume is $\mathbf{1 4 5 0 0} \mathbf{~ c m}^{\mathbf{3}}$
6	$5(4-x)>10,20-5 x>10,-5 x>-10 \quad 5 x<10$ so $\boldsymbol{x}<2$
6	
7	$\frac{10 y}{c^{2}} \times \frac{c^{5}}{2 y^{3}}=\frac{10 c^{5} y}{2 c^{2} y^{3}}=\frac{\mathbf{5} \boldsymbol{c}^{\mathbf{3}}}{\boldsymbol{y}^{\mathbf{2}}}$
8	The mean is $\mathbf{7 1}$ minutes. The totals for the tables are $\sum x=426, \quad \sum x^{2}=30392$ $\text { or } \sum x=426, \quad \sum(x-\bar{x})^{2}=146$ The standard deviation is $\sqrt{\frac{30392-\frac{426^{2}}{6}}{5}}=\mathbf{5 . 4}$ or $\sqrt{\frac{146}{5}}=\mathbf{5 . 4}$
9	$A B=\sqrt{35^{2}+20^{2}+25^{2}}=\sqrt{2250}=15 \sqrt{10}$ or 47.43 cm
10	$40=\frac{x}{360} \times \pi \times 13^{2}, x=\frac{40 \times 360}{169 \pi}, x=27^{\circ}$
11	$\frac{7}{x+5}-\frac{2}{x+1}=\frac{7(x+1)-2(x+5)}{(x+5)(x+1)}=\frac{7 x+7-2 x-10}{(x+5)(x+1)}=\frac{\mathbf{5 x - 3}}{(x+5)(x+1)}$

C	May Practice Test - Calculator	
1	Bacteria in a petri dish increase at a rate of 6\% per hour. At 12 noon there are 500 bacteria in the petri dish. How many bacteria will be present three hours later?	3
2	Write $x^{2}-4 x+10$ in completed square form $(x+p)^{2}+q$	2
3	A sector of a circle has a centre angle of 42° and a radius of 16 centimetres. Calculate the area of this sector.	3
4	Find the volume of a cone with a diameter of 1.4 metres and a height of 120 centimetres.	3
5	Determine if this is a right-angled triangle.	3
6	A manufacturer of a 500 millilitre soft drink samples 10 bottles from its production line on a Monday. The capacity (in millilitres) for each bottle is: $\begin{array}{llllllllll} 495 & 500 & 504 & 505 & 494 & 504 & 502 & 497 & 500 & 501 . \end{array}$ (a) Find the median and the semi-interquartile range for this sample. (b) On Thursday 10 bottles were also sampled. This time the median capacity is 500 ml and the semi-interquartile range is 2 ml . Make two valid comparisons comparing the results on Monday and Thursday.	3 2
7	Find the equation of the straight line passing though the points $(1,-6)$ and $(3,-10)$. Give your answer in the simplest form	3
8	Change the subject of the formula $h=5 r^{2}-x \text { to } r$	3

9	An imported car costs $£ 30993.75$ after the addition of 12.5% import duty. How much did the car cost before the import duty was added on?	$\mathbf{3}$
10	(a) Factorise $x^{2}+3 x-10$	$\mathbf{2}$
(b) Hence simplify $\frac{(x-2)^{2}}{x^{2}+3 x-10}$	$\mathbf{2}$	
11	Use the laws of indices to express $\frac{4 t^{3}}{s} \div \frac{8 t}{s^{2}}$ in the simplest form	$\mathbf{3}$
	35 marks	

Answers

1	$500 \times\left(\frac{100+6}{100}\right)^{2}=\mathbf{5 9 5 . 5} \text { or } 500 \times 1.06^{3}=\mathbf{5 9 5 . 5}$
2	$x^{2}-4 x+10=(x-2)^{2}+10-(-2)^{2}=(\boldsymbol{x}-2)^{2}+\mathbf{6}$
3	Area is $\frac{42}{360} \times \pi \times 8.3^{2}=25.249 \ldots$ Area is $\mathbf{2 5 . 2} \mathbf{~ c m}^{2}$
4	Diameter is 1.4 metres or 140 cm . Radius is 70 cm and height is 120 cm . $V_{\text {cone }}=\frac{1}{3} \times \pi \times 70^{2} \times 120=615752.1601$, Volume is $\mathbf{6 1 5} 752$ cm3 Or $V_{\text {cone }}=\frac{1}{3} \times \pi \times 0.7^{2} \times 1.2=0.6157521601$, Volume is $\mathbf{0 . 6 2} \mathbf{m}^{3}$
5	$\begin{gathered} c^{2}=24.1^{2}=580.81 \\ a^{2}+b^{2}=12^{2}+20.9^{2}=580.81 \\ 24.1^{2}=12^{2}+20.9^{2} \end{gathered}$ By the COP this is a right-angled triangle
6	Put the data in order494 495 497 500 $500 \mid$ 501 502 504 504 505 Median is $\mathbf{5 0 0 . 5} \mathbf{~ m l}, Q_{1}=497, Q_{3}=504$. SIQR is $\frac{504-497}{2}=\mathbf{3 . 5} \mathbf{~ m l}$ On average the sample from Thursday was lower and closer to the stated volume. The sample from Thursday was also more consistent (less varied) than the sample from Monday.
7	The gradient is $-\frac{4}{2}$ or -2 . Using point $(1,-6) \quad y=m x+c$ so $-6=(-2) \times 1+c, c=-4$ The equation of the line is $y=-2 \boldsymbol{x}-\mathbf{4}$.
8	$h=5 r^{2}-x, \quad h+x=5 r^{2}, \quad \frac{h+x}{5}=r^{2}, \quad \sqrt{\frac{h+x}{5}}=r \quad \boldsymbol{r}=\sqrt{\frac{h+x}{5}}$
9	$112.5 \%=30993.75,1 \%=275.50$ (30993.75 $\div 112.5$), $100 \%=£ 27550$
10	(a) $x^{2}+3 x-10=(x+5)(x-2)$ (b) $\frac{(x-2)^{2}}{x^{2}+3 x-10}=\frac{(x-2)(x-2)}{(x+5)(x-2)}=\frac{x-2}{x+5}$
11	$\frac{4 t^{3}}{s} \div \frac{8 t}{s^{2}}=\frac{4 t^{3}}{s} \times \frac{s^{2}}{8 t}=\frac{4 s^{2} t^{3}}{8 s t}=\frac{\boldsymbol{s} \boldsymbol{t}^{2}}{\mathbf{2}}$

